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Dynamic consequences of prey refuges in a simple model system:
more prey, fewer predators and enhanced stability
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Abstract

In this work, we use an analytical approach to study the dynamic consequences of the simplest forms of refuge use by the prey.
Although this problem is not new, there are surprisingly few intents to clarify the role of prey refuges in simple predator–prey
models other than the original Lotka–Volterra equations. Here we incorporate prey refuges in a widely known continuous model
that satisfies the principle of biomass conversion. We will evaluate the effects with regard to the local stability of equilibrium
points in the first quadrant, equilibrium density values, and the long-term persistence of the populations.

We show that there is a trend from limit cycles through non-zero stable points up to predator extinction and prey stabilizing
at high densities. This transitions occur as hidden prey increase in number or proportion, and/or increases the ratio of mortality
to conversion efficiency of predators. The domains of stability in terms of the parameter space differ between the two modes of
refuge use analyzed.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The study of the consequences of individual behav-
ior on the population phenomena can be recognized
as a major issue in contemporary theoretical ecology.
Nevertheless, linking behavior to population dynam-
ics has received comparatively little attention (Real
and Levin, 1991).

In the frame of predator–prey systems, most of
the empirical and theoretical work has considered
the behavior of predators and its implications on the
population dynamics (Harrison, 1979; Holling, 1959;
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Murdoch and Oaten, 1975; Ruxton, 1995; Sih et al.,
1988). At a comparatively smaller extent, the hiding
behavior of preys has been incorporated as a new in-
gredient of simple predator–prey models and its major
consequences on the system stability have been stud-
ied. This was initially done by modifying the original
Lotka–Volterra predator–prey equations and the most
widely reported conclusion was the community equi-
librium being stabilized by the addition of refuges for
preys, and prey extinction being prevented (Harrison,
1979; Holling, 1959; Maynard Smith, 1974; Murdoch
and Oaten, 1975; Sih, 1987).

The traditional ways in which the effect of
refuge use by the preys has been incorporated in
predator–prey models is to consider either a constant
number or a constant proportion of the prey popula-
tion being protected from predation (Taylor, 1984).
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The effect itself of refuge use (and probably of any
antipredator strategy) on the population growth is
complex in nature, but for modeling purposes it can
be understood as constituted by two components: the
first one is a primary effect, comprising the reduc-
tion of prey mortality due to reduction in predation
success. Therefore, primary effects affect positively
the population growth of preys and negatively that of
predators. Secondary effects could include trade-offs
and by-products of the prey behavior that could be
either advantageous or detrimental for the involved
populations. A classic secondary effect is the re-
duction in prey’s birth rate due to the sub-optimal
states of resources and/or conditions in the refuge.
Furthermore, a different kind of effects—indirect
effects—could arise in more complex food-web
models as a result of the feedback structure of the
system.

More complex models incorporating prey refuges
have been introduced and analyzed byMcNair (1986),
Sih (1987), Ruxton (1995), andScheffer and de Boer
(1995), among others, which implicitly assume the
existence of cost on the prey growth rate, and other
secondary effects such as predator dependence of
refuge use. The conclusions commonly are referred
to as changes in the stability properties of the system
explained by the addition of refuge. Nevertheless, the
results are often ambiguous and difficult to interpret
in biological terms.

An accepted strategy is to study the most simple but
plausible models before to move toward more complex
ones if empirical or theoretical evidence justifies this.
On the basis of the Lotka–Volterra formulation, more
realism has been added to obtain simple predator–prey
models, through including self-limitation in the
lowest-level population, and by making saturating
the functional and numerical responses (May, 1974).
Nevertheless, to our knowledge there are surprisingly
few studies in which the primary effect of refuge is
incorporated into simple continuous predator–prey
models other than the original Lotka–Volterra.

An exception is the work ofCollings (1995), which
introduces and analyzes a model, attributed to May
(1973) in its original form, where the population
growth of both preys and predators is logistic in ab-
sence of predation, and the functional response is
hyperbolic. They incorporate the refuge as a constant
fraction of the prey, by which the predator carrying

capacity and the prey mortality due to predation are
affected. The logistic model used by Collings be-
longs to a family that do not conform to the principle
of biomass conversion. That is, the functional and
numerical responses are not explicitly related. The
model we will use here to incorporate the primary
refuge effect, on the other hand, is a natural extension
of the Lotka–Volterra model with the inclusion of prey
self-limitation and a Holling II functional response.
Here the predator reproductive rate responds only to
the rate of prey killed per predator, thus obeying the
principle of biomass conversion (Ginzburg, 1988).
This model has a long tradition in theoretical ecology
(Ginzburg, 1988; May, 1974; Maynard Smith, 1974;
Murray, 1989; Yodzis, 1989) and a systematic study
of the effects of prey behavior on the system dynamics
should not disregard its use as a starting point.

Recognizing that there is a huge variety of
predator–prey models in the ecological literature,
those best known and understood in mathematical and
biological terms are likely to be the Lotka–Volterra
model, the May model, and the Rosenzweig–
MacArthur model (Rosenzweig, 1971) which we use
here. As mentioned above, the theoretical study of
the population consequences of prey’s refuge in its
simplest form has been done on the first two only and
this work intends to fill this gap.

For consistency with the previous works on this
field, we will consider refuge as an environmental
place where predation rate is lower. Likewise, we will
consider, as usual, the effect of having a constant num-
ber of prey and a constant proportion of preys using
refuges. The mathematical analysis will be done sep-
arately in each case.

We will evaluate the effects of refuge use by the
prey, through the analysis of the following model re-
sponses: (a) local stability of equilibrium points in the
first quadrant, (b) equilibrium density values, and (c)
long-term persistence of each population.

2. The basic model

We assume the populations sizes changing con-
tinuously with time, uniform distribution over space
and neither age or sex structure. The model, we will
analyze here belong to the general Gause model
(Freedman, 1980), which is represented by the
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second-order differential equations system:

X :




dx

dt
= xg(x)− yφ(x)

dy

dt
= (pφ(x)− c)y

(1)

We denote byx = x(t) the population size of prey
(measured in biomass or number density), and byy =
y(t) the population size of predators. The following
assumptions are implicit in this model (Haśık, 2000):

(i) There exists a numberK > 0 such thatg(x) >
0 for 0< x < K; g(K) = 0; g(x) < 0 forx > K.

(ii) φ(0) = 0; φ′(x) > 0 for x > 0; φ′+(0) > 0.
(iii) There is a unique point(xe, ye)with 0 < xe < K,

ye > 0 such thatpφ(xe) − c = 0 andxeg(xe) −
yeφ(xe) = 0.

(iv) The prey isoclineh(x) := xg(x)/φ(x) is a strict
concave down function, symmetric with respect
to its maximum which is attained at a pointm >

0.
(v) The functionsg(x) and φ(x) are smooth as re-

quired.

According toMaynard Smith (1974), there exists
a quantityxr of the prey population that occupies a
refuge. This quantity is considered from two alterna-
tive points of view: (a) the quantity of hidden prey is
proportional to the size of the prey population at in-
stantt, i.e.xr = βx or else, (b) the quantity of hidden
prey is a constantxr = γ, i.e. the quantity of refuged
prey depends on the capacity of hiding places found
in the environment.

In the first case, the dynamics of the model with
proportional refuge, given a logistic growth function of
the prey, is equivalent to the dynamics of the original
model:

Theorem 1. The effect of refuge utilization by a con-
stant fraction of the prey population, i.e. withxr = βx,
on a system represented by a Gause type model of the
form

X :




dx

dt
= r

(
1 − x

K

)
x − yφ(x)

dy

dt
= (pφ(x)− c)y

is equivalent to reduce K (the environmental carrying
capacity) by a proportion1 − β.

We note that the vector fieldYβ of Appendix A
accounts for the dynamics of preyx(n)(t). The only
difference between the vector fieldXβ andYβ is the
decrease of the carrying capacity by 1−β, determining
a new value forxe andye.

Corollary 2. The dynamics of the vector fieldYβ re-
lated to exposed preyx(n)(t) = (1−β)x(o) is the same
of that of vector fieldXβ.

We will analyze in more detail the effect of adding
prey refuges to a specific predator–prey system rep-
resented by the well-known Rosenzweig–MacArthur
model (seeRosenzweig, 1971; May, 1974; Murray,
1989; Yodzis, 1989):

Xµ :




dx

dt
= r

(
1 − x

K

)
x − qxy

x + a

dy

dt
= b

(
px

x + a
− c

)
y

(2)

whereµ = (r,K, q, a, b, c, p) ∈ R7+, and the pa-
rameters having the following biological meanings:
r is the intrinsic per capita growth rate of prey;K
is the prey environmental carrying capacity;q is the
maximal per capita consumption rate of predators;a
is the amount of prey needed to achieve one-half of
q; c is the per capita death rate of predators; andp is
the efficiency with which predators convert consumed
prey into new predators.

In Berryman et al. (1995), the vector fieldXµ with
b = 1 is classified as a “prey-dependent functional
response model”. The functionh(x) = (qx/x + a), is
a saturating functional response of the kind Holling
type II—Michaelis–Menten–Monod and it represents
the amount of prey killed per unit time by an indi-
vidual predator. Note that predators do not exhibit
self-interference since(∂h/∂y) = 0. In this functional
response, the parametera is a measure of the abrupt-
ness of the function (Getz, 1996). If a → 0, the curve
increases fast whereas ifa → K, the curve grows
slowly, i.e. a greater quantity of prey is needed to
attainq/2.

As a bioeconomic model,y = y(t) indicates the
fishing effort which is the number of standardized
vessels-gear units actively fishing at timet. Parameter
q represents catchability,p is the per unit biomass price
of the landed fish,c is the fishing cost per unit effort
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Fig. 1. Conceptual diagram of the Rosenzweig–MacArthur model
with prey refuge. Small black circles represent the prey, large
circles represent predators. The vertical dashed line represents the
boundary of a refuge, where prey are invulnerable to predators.
The refuge could protect either a constant number or a constant
fraction of the total prey population.

andb is the stiffness parameter that measures the speed
with which the efforty reacts in the perceived rent flow
(Clark, 1990; Goh, 1980; González-Olivares, 1998).

This predator–prey model has been widely studied
in many papers. For instance, inCheng (1981), Haśık
(2000), andSugie et al. (1997), the uniqueness of the
limit cycle is proved; inCheng et al. (1981)andSugie
and Katayama (1999), it is shown as a necessary and
sufficient condition under which the positive equilib-
rium of (2) is globally asymptotically stable;Sunhong
(1989) provides a classification of its global struc-
ture; Ardito and Ricciardi (1995)provide Lyapunov
functions to prove its global asymptotic stability and
Hesaaraki and Moghadas (2001)provide conditions
for the existence of limit cycles.

According to Collings (1995), we modified the
functional response of the model (2), and obtained
the system:

Xxr
µ :




dx

dt
= r

(
1 − x

K

)
x − q(x − xr)y

x − xr + a

dy

dt
= b

(
p(x − xr)

x − xr + a
− c

)
y

which is graphically represented inFig. 1.

3. A constant proportion of prey using refuges

When consideringxr = βx, the model that represent
this situation is given by the Kolmogorov type system:

Xβ
µ :




dx

dt
=
(
r
(
1 − x

K

)
− q(1 − β)y

(1 − β)x + a

)
x

dy

dt
= b

(
p(1 − β)x

(1 − β)x + a
− c

)
y

which can be written as

Xβ
µ :




dx

dt
=
(
r
(
1 − x

K

)
− qy

x + (a/(1 − β))

)
x

dy

dt
= b

(
px

x + (a/(1 − β))
− c

)
y

(3)

that is, the only change relative to system (2) is the
new value of the half saturation constanta′ = (a/(1−
β)). It is easy to see that the dynamics of the system
(3) is topologically equivalent to the original system
(Andronov et al., 1973; Sotomayor, 1979). Whenβ →
0, the new half saturation constanta′ is close to the
original one, while ifβ → 1, the value ofa′ increases.

The equilibrium points of vector fieldXβ
µ areO =

(0,0), PK = (K,0) and Pe = (xe, ye) with xe =
(a′c/(p− c)) andye = (a′rp(K(p− c)− a′c))/q(p−
c)2; and clearly ifK(p − c) − a′c = K(p − c)(1 −
β)− ac = 0, the pointPe collapses withPK.

Following the methodology used inSáez and
González-Olivares (1999), we make a reparameteriza-
tion of the vector fieldXβ

µ or the system (3) including
changes of variables and a time rescaling given by
the functionϕ : (R+

0 )
2 ×R→ (R+

0 )
2 ×R, such that

ϕ(x(n), y(n), τ)=
(

Kx(n),
rK

q
y(n),

r

x + A
τ

)
= (x(o), y(o), t)

Here, the subindex (n) indicates the new variable
and (o) the older. We get

detDϕ(x(n), y(n), τ) = r2K2

q(x + A)
> 0

The vector field in the new coordinates isZη = ϕ ◦Xχ
µ

(Dumortier, 1978), and the associated second-order
differential equations system is the following Kol-
mogorov type polynomial:

Zµ :




dx

dτ
= ((1 − x)(x + A)− y)x

dy

dτ
= B(x − C(x + A))y

(4)
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which has only three parameters, i.e.µ = (A,B,C) ∈
R3+, whereA = (a′/K), B = (bp/r), C = (c/p) with
a′ = (a/1 − β) and the system (4) is topologically
equivalent to the system (3). The equilibrium points
of vector fieldZµ areO = (0,0),Q1 = (1,0), and
Qe = ((AC/(1 − C)), (A(1 − C − AC)/(1 − C)2)).
The pointQe ∈ R2+, if and only if 1− C > 0 and
N = 1 − C − AC > 0. If N = 0, the pointsQ1 and
Qe collapse, and ifN < 0, the pointQe lies within
the fourth quadrant andQ1 is globally asymptotically
stable.

Theorem 3. Let (A,C) ∈ R2+
(i) If 0 < A < (1 − C)/(1 + C) < 1, the system(4)

has a unique limit cycle surrounding the point
Qe.

(ii) If 0 < (1−C)/(1+C) < A < ((1−C)/C) < 1,
the system(4) has a unique stable equilibrium
point at Qe.

(iii) If 0 < ((1−C)/C) < A < 1, the system(4) has
a stable equilibrium point at(1, 0) and Qe is at
the fourth quadrant.

Fig. 2 shows a two-parameter bifurcation diagram
where the curvesM = 0 andN = 0 are displayed.
That is,A = (1 − C)/(1 + C) andA = ((1 − C)/C),
respectively.

Fig. 2. Bifurcation diagram of system (4), showing the kind of stability inside each domain of attraction.

We note that parameterB has no importance for
this system. In bioeconomic terms, parameterC rep-
resents the cost-price relation. In terms of the original
parameters we formulate our results as follows:

Theorem 3a. Let (a′, c, p,K) ∈ R4+
(i) If 0 < (a′/K) < (p − c)/(p + c) < 1, the sys-

tem(3) has a unique limit cycle, surrounding the
unique equilibrium point at the first quadrant.

(ii) If 0 < (p−c)/(p+c) < (a′/K) < ((p−c)/c) <

1, the system(3) has a unique stable equilibrium
point atPe = ((a′c/(p − c)), (a′rp(K(p − c) −
a′c)/q(p− c)2)).

(iii) If 0 < ((p− c)/c) < (a′/K) < 1, the system(3)
has a stable equilibrium point at (K, 0).

In reference to parameterβ, the former relations can
be expressed as:

Theorem 3b. Let (a′, c, p,K) ∈ R4+
(i) If 0 < β < 1−(a(p+c)/K(p−c)), the prey and

predator populations oscillate around the unique
equilibrium point at the first quadrant.

(ii) If 0 < 1 − (a(p + c)/K(p − c)) < β < 1 −
(ac/K(p − c)), the populations tend to reach a
globally asymptotically stable equilibrium point.
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(iii) If 0 < 1 − (ac/K(p − c)) < β < 1, the prey
population tends to reach its maximum value K
and the predators are depleted.

4. A constant number of prey using refuges

A different dynamics is expected when a fixed quan-
tity of prey γ > 0 uses refuges, since they-axis is
not an invariant set. Under this assumption, we get the
system

Xγ
µ :




dx

dt
= r

(
1 − x

K

)
x − q(x − γ)y

x − γ + a

dy

dt
= b

(
p(x − γ)

x − γ + a
− c

)
y

(5)

where the equilibrium points areO = (0,0), PK =
(K,0) andPe = (xe, ye)with xe = (ac+(p−c)γ/(p−
c)) andye = (pr(ac + (p − c)γ)((K − γ)(p − c) −
ac)/cqK(p− c)2).

Different cases appears, forγ > a, γ = a andγ <
a. If (K − γ)(p− c)− ac = 0, the pointPe collapses
with PK. We distinguish two cases in this situation:
γ �= a andγ = a. In the first case, we will analyze
the model only withγ > a > 0, since the results are
similar whenγ < a.

4.1. Case 1

By considering a fixed quantity of prey occupying
refuges,γ > a > 0, we have four singularities within
the first quadrant. Nevertheless, it is of interest only
the region defined byx > γ. Under these circum-
stances the pointsO = (0,0) andPγ = (γ − a,0) are
not considered. As before, in order to simplify the cal-
culus we make a reparameterization using a change of
variables and a time rescaling by means of the func-
tion ϕ: (R+

0 )
2 ×R→ (R+

0 )
2 ×R given by

ϕ(x(n), y(n), τ)=
(

Kx(n),
rK

q
y(n),

r

x − L+ A
τ

)
= (x(o), y(o), t)

where the subindex (n) indicates the new variable
and (o) the older. We obtain detDϕ(x(n), y(n), τ) =
(r2K2/q(x−L+A)) > 0. The vector field in the new
coordinates isZL

η = ϕ ◦ Xγ
µ (Dumortier, 1978), and

the associated differential equation system has only

three parameters:

ZL
η :




dx

dτ
= (1 − x)x(x − L+ A)− (x − L)y

dy

dτ
= B(x − L− C(x − L+ A))y

with η = (A,B,C) ∈ R3+ for A = (a/K), B =
(bp/r), C = (c/p), L = (γ/K) and the vector field
ZL
η is topologically equivalent (Andronov et al., 1973;

Sotomayor, 1979) to X
γ
µ.

We note that they-axis (x = 0) is not an invariant
set of system (6), which corresponds to a second-order
polynomial system with one straight invariant line.
The equilibrium points of vector fieldZL

η areO =
(0,0), Q1 = (1,0), QA = (L − A,0) and Qe =
(xe, ye) with xe = (AC+ (1−C)L)/(1−C) andye =
((AC+(1+C)L)H)/C(1−C)2; whereH(A,C,L) =
(1 − C)(1 − L) − AC. Only Q1 and Qe, are of our
interest sincex > L. We note that the vector field
X
γ
µ is not defined atx = γ − a, but it is possible to

make a continuous extension to the point(γ − a,0).
The pointQe will be in the first quadrant if and only
if 1 − C > 0 andH > 0.

Lemma 4.1. The setΓ = {(x, y) ∈ R2/L ≤ x ≤
1, y ≥ 0} is an invariant region of vector fieldZL

η .

Lemma 4.2.

(a) If H > 0, the singularity(1, 0) of system(6) is a
saddle point and the singularity(xe, ye) is found
within Γ .

(b) If H < 0, the singularity(1, 0) of system(6) is a
locally stable equilibrium point and the singular-
ity (xe, ye) is found in the fourth quadrant.

(c) If H = 0, the singularity(xe, ye) of system(6)
collapses with the point(1, 0),which is a locally
stable equilibrium point.

Theorem 4.3. Let H = (1 − C)(1 − L) − AC > 0
andS = (1−C)3L2 − (1−C)(2AC2 + (1−C)2)L+
AC2(1 − C − AC− A)

(a) If S > 0, the singularity(xe, ye) of system(6) is an
unstable equilibrium point, surrounded by a limit
cycle.

(b) If S < 0, the singularity(xe, ye) of system(6) is a
locally asymptotically stable equilibrium point.
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In terms of the original parameters, the results
shown inAppendix A reveal the following proposi-
tions:

Lemma 4.1a. The setΓ ′ = {(x, y) ∈ R2/γ ≤ x ≤
1, y ≥ 0} is an invariant region of the vector fieldXγ

η .

Lemma 4.2a. Let H ′ = (c, p,K, γ) = (1 −
(γ/K))(1 − (c/p))− (ac/pK)

(a) If H ′ > 0, the singularity (K, 0) of system(5) is a
saddle point and the singularity(xe, ye) is found
within Γ ′.

(b) If H ′ < 0, the singularity (K, 0) of system(5) is
a locally stable equilibrium point and the singu-
larity (xe, ye) is found in the fourth quadrant.

Theorem 4.3a. Let H ′ = (c, p,K, γ) = (1 −
(γ/K))(1−(c/p))−(ac/pK) > 0 andS′(c, p,K, γ) =
(p−c)3γ2−(p−c)(2ac2+K(p−c)2)γ+ac2(K(p−
c)− a(c − p))

(a) If S′ > 0, the singularity(xe, ye) of system(5)
is an unstable equilibrium point, surrounded by a
limit cycle.

(b) If S′ < 0, the singularity(xe, ye) of system(5) is
a locally asymptotically stable equilibrium point.

4.2. Case 2

A particular case arises, by considering in system
(5) that a fixed quantityγ = a of prey occupies
refuges. Under this condition, we obtain the system

X
γ
ε :




dx

dt
= r

(
1 − x

K

)
x − q(x − γ)y

x

dy

dt
= b

(
p(x − γ)

x
− c

)
y

(7)

where ε = (r,K, q, b, c, p) ∈ R6+. By considering
L = A in the vector fieldZL

η , we obtain the equivalent
system

YLν :




dx

dτ
= (1 − x)x2 − (x − L)y

dy

dτ
= B(x(1 − C)− L)y

(8)

whereν = (B,C) ∈ R2+ andx − L > 0. The equi-
librium points areO = (0,0), Q1 = (1,0) andQe =

(xe, ye) wherexe = (L/(1 − C)) and ye = (L(1 −
C − L)/C(1 − C)2).

The pointQe ∈ R2+ if and only if, 1 − C > 0
and 1− C − L > 0. Since(0,0) /∈ Γ , it will not be
analyzed. The Jacobian matrix is now

DYLν (x, y) =
(

2x − 3x2 − y −(x − L)

B(1 − C)y B(x(1 − C)− L)

)
⊥

It is easily noted that:

(a) If H = 1 − C − L > 0, the singularity (1, 0) of
system (8) is a saddle point and the singularity (xe,
ye) is found inΓ .

(b) If H < 0, the singularity (1, 0) of system (8) is a
locally stable equilibrium point and the singularity
(xe, ye) is found in the fourth quadrant.

(c) If H = 0, the singularity (xe, ye) collapses with
the singularity (1, 0).

Theorem 5. In system(8), letH(C,L) = 1−C−L >

0 andS(C,L) = (1 − 3C)L− (1 − C)(1 − 2C).

(a) If S > 0, the singularity(xe, ye) is an unstable
equilibrium point, surrounded by at least one limit
cycle.

(b) If S < 0, the singularity (xe, ye) is a globally
asymptotically stable equilibrium point.

Fig. 3 presents a two-parameter bifurcation dia-
gram, showing the curvesS = 0 andH = 0, that is,
the curvesL = ((1−C)(1− 2C))/(1− 3C) andL =
1 + C, respectively. It can be noted that the region of
the parameter space for which the singularity (xe, ye)
is locally stable is larger than the equivalent region in
the model without refuge use or with constant propor-
tion refuge.

In terms of the original parameters, we obtain the
following:

(a) The setΓ ′ = {(x, y) ∈ R2/γ ≤ x ≤ K, y ≥ 0} is
an invariant region of vector fieldXγ

ε .
(b) If H ′′(c, p,K, γ) = 1 − (c/p) − (γ/K) > 0, the

singularity (K, 0) of system (7) is a saddle point
and the singularity (xe, ye) is in Γ ′.

(c) If H ′′ < 0, the singularity (K, 0) of system (7) is a
locally stable equilibrium point and the singularity
(xe, ye) is in the fourth quadrant.
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Fig. 3. Diagram of system (8), showing the kind of stability inside each domain of attraction.

(d) If H ′′ = 0, the singularity (xe, ye) collapses with
the point (K, 0), which is a locally stable equilib-
rium point.

Theorem 5a. Let H ′′ > 0 and S(c, p,K, γ) = (p −
3c)pγ −K(p− c)(p− 2c)

(a) If S′′ > 0, the singularity(xe, ye) of system(7) is
an unstable equilibrium point, surrounded by at
least one limit cycle.

(b) If S′′ < 0, the singularity(xe, ye) of system(7) is
a locally asymptotically stable equilibrium point.

5. Discussion

Earlier theoretical work suggest that the use of
refuges by prey has a stabilizing effect on the predator–
prey dynamics, particularly when a fixed number of
hidden prey is considered (Maynard Smith, 1974;
Murdoch and Oaten, 1975; Harrison, 1979; Sih, 1987;
Ives and Dobson, 1987; Ruxton, 1995). Nevertheless,
other results in the context of different models show no
such simple pattern (McNair, 1986; Collings, 1995).
On the other hand, it has been shown that refuges could
also increase the equilibrium density of prey (Collings,
1995; Ives and Dobson, 1987) or that of both prey and
predator (McNair, 1986). In this work, we analyzed

the effects of incorporating refuges, as fixed numbers
and constant proportion of prey, on the dynamics of
the Rosenzweig–MacArthur predator–prey model.

It is important to note that parameterB does not
influence the equilibrium and stability properties of the
model. This is evident becauseB does not take part on
the determination of the equilibrium point, and it has
not influence on the sign of the trace or determinant
of the Jacobian matrix evaluated at equilibrium.

Our analyses on the stability properties of the model
as a function of the values of the relevant parameters
reveals that:

1. Equilibrium density of prey increases while that of
predators decreases as refuge use by prey increases
and/or predator efficiency decreases. We refer to
predator efficiency as the inverse of parameter
C = (c/p), which represents the ratio of preda-
tor mortality to conversion efficiency. Although
several works have shown an increase in prey
density as they use refuges (see above), the effect
on predator density is less clear. In particular, our
results contrast with those ofMcNair (1986)who
predicted an increase in predator equilibrium den-
sity with refuge use. Nevertheless, from our results
it is easy to show that under a very restricted set of
conditions we expect an increase in the equilibrium
point of both prey and predators as the proportional



E. González-Olivares, R. Ramos-Jiliberto / Ecological Modelling 166 (2003) 135–146 143

refuge increases. This occurs when the density
equilibrium of prey (xe) is less than(1 − A)/2,
this point being the maximum of the prey isocline
and the point where the stability of the equilib-
rium changes from repellor to attractor. Therefore,
it can be found that predator equilibrium density
increases with the proportion of prey refuge, in
agreement with McNair’s results, only when that
equilibrium is unstable and for small values ofxe.

2. When refuge use is high and predator efficiency
is low, the models predict that prey reach their
carrying capacity and predators go extinct, a be-
havior also observed byCollings (1995)for certain
parameter ranges.

3. The refuge use by prey increases the local stability
of the community equilibrium in the first quadrant,
which is in agreement with most previous results
on simple models, cited above. In this work, sta-
bilization or increase of stability refers to cases
where a community equilibrium point changes
from repeller to an attractor due to changes in the
value of a control parameter (seeEdelstein-Keshet,
1988; Strogatz, 1994). Three kind of equilibria can
be reached: unstable point with stable orbits, sta-
ble coexistence of prey and predators, and preda-
tor extinction while the prey reaches its carrying
capacity. The parameter conditions under which
each of these equilibrium solutions are expected,
depend strongly on the mode of refuge use (i.e.
constant proportion or constant number of prey).

If a constant proportion of the prey population
is using refuges, the stability of equilibria increases
with the fraction of hidden prey, and decreases with
predator efficiency. Efficient predators in interaction
with prey exhibiting low refuge use, results in stable
population oscillations (limit cycles). As refuge use
increases and/or predator efficiency decreases, the
system stabilizes at non-zero densities, and then it
stabilizes at the carrying capacity of prey and preda-
tor extinction (Fig. 1). Our predictions concerning
the increase in prey density and predator extinc-
tion agree with the results ofCollings (1995)who
used a model with a constant proportion refuge, of
similar complexity to ours, but founded on differ-
ent structural assumptions. Our results also agree
with those of Scheffer and de Boer (1995), since
they found a clear stabilizing effect of prey refuge

(fraction of prey not exposed to predators) in their
algae-zooplankton model system. Nevertheless, the
analyses ofMcNair (1986)andCollings (1995)show
that a stable equilibrium can be transformed to unsta-
ble by the addition of constant proportion refuge. The
model of McNair (1986) considers costs of refuge
use, and the functional response it is not specified.
On the other hand, the model ofCollings (1995)
does not include biomass conversion between prey
captured and predator growth. Therefore, the basic
assumption implicit in those models are different
to ours.

With a constant number of hidden prey, population
oscillations can occur only under a very restricted set
of parameter values i.e. with very few prey occupying
refuges and the predator having a high mortality rate
relative to its efficiency to convert killed prey into own
tissues. A large portion of the parameter space drives
to predator extinction (seeFig. 2). This occur at high
levels of refuge use if predator are very efficient, and
with smaller number of hidden prey as predator are
less efficient. A stable equilibrium can never transform
to unstable by the addition or by increasing of constant
number refuge, in close agreement with earlier results
(Maynard Smith, 1974; McNair, 1986; Sih, 1987).

Our results indicate that efficient predators (with
C < 0.5) will never go extinct if a constant propor-
tion of prey occupies refuges, but the same efficient
predators could disappear if a high constant number of
prey occupies refuges. Conversely, inefficient preda-
tors can easily go extinct if prey increases the use of
refuge, either as a constant proportion or number. The
main differences between the two modes of refuges
lies in that the constant number refuge model predict a
larger space of conditions under which stable non-zero
densities as well as predator extinction occur, relative
to the predictions of the constant proportion refuge
model. Our major results are summarized inTable 1,
where it is shown the effects of increasing refuge use
under the different models and parameter conditions
worked out.

Although our results are valid under some restric-
tive assumptions derived from the base model, they
are robust and comparable to earlier results. We expect
the dynamics to be modified if more realistic infor-
mation is added to the model e.g. reduced recruitment
or enhanced mortality as costs associated to the an-
tipredator behavior, or predator-dependent responses.
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Table 1
A summary of the main results, indicating the effect of increasing refuge use by prey

Mode of refuge

Constant proportion Constant number

Predator efficiency Predator efficiency

Low High Low High

Local stability of equilibrium + + + Remains stable
Prey equilibrium density + + + +
Predator equilibrium density − − − −
Predator extinction probability + No + +
“+” and “−” signs indicate respectively the direct and inverse effects on the dynamic property listed at the left.
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Appendix A

Proof of Theorem 1. The system that incorporate
refuge use in proportion to the prey size is given by

Xβ :




dx

dt
= r

(
1 − x

K

)
x − yφ(x − βx)

dy

dt
= (pφ(x − βx)− c)y

By considering the change of variable given by the
function

ϕ : (R+
0 )

2 → (R+
0 )

2 such thatϕ(x(n), y)

=
(

x(n)

1 − β
, y

)
= (x(o), y)

where subindexes (n) and (o) denote the new and old
variable, respectively.

We get detDϕ(x(n), y) = (1/(1 − β)) > 0. �

Then, the vector field in the new coordinates system
Y = ϕ ◦ X (Dumortier, 1978), has the formY =
P(∂/∂x(n)) + Q(∂/∂y) and the associated differential
equation system is given by

Yβ :




dx(n)
dt

= r

(
1 − x(n)

K(1 − β)

)
x(n)

−(1 − β)yφ(x(n))

dy

dt
= (pφ(x(n))− c)y

which is qualitatively equivalent to the system (1) at
the first quadrant. The affirmation ofTheorem 1is
corroborated by consideringK′ = (1 − β)K.

Proof of Theorem 3. The Jacobian matrix of system
(4) is

DZµ(x, y)

=
(

2x − 3x2A− 2xA− y −x
B(1 − C)y B(x(1 − C)− AC)

)

WhenN = 1 − C − AC > 0, the pointsO = (0,0)
and Q1 = (1,0) are saddle points. For the unique
equilibrium point at the first quadrant we get:

DZµ(xe, ye) =




ACM

(1 − C)2
− AC

1 − C

ABN

1 − C
0




with M = 1 − C − AC − A. As detDZµ(xe, ye) =
(A2BCN)/(1 − C)2, the eigenvalues depend only on
trDZµ(xe, ye) = (ACM)/(1−C)2, and we obtain that:
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(i) If M > 0, the point (xe, ye) is unstable and,
according to the Poincaré-Bendixon Theorem, a
limit cycle exists (Arrowsmith and Place, 1992).

(ii) If M < 0, the point (xe, ye) is locally stable.
(iii) If M = 0, the point (xe, ye) is an order one weak

focus (i.e. neutrally stable cycles). �

Proof of Lemma 4.1.

(a) It is clear that, ifx = L, we obtain(dx/dτ) =
A(1 − x)x > 0, and(dy/dτ) = −ABC< 0.

(b) Forx = 1, we obtain(dx/dτ) = −(1 − L)y < 0,
and(dy/dτ) = BHy; i.e. independent of parameter
values, any trajectory crosses the straight linex =
1, towards the inside ofΓ , and

(c) the axisx = 0 is an invariant manifold of system
(6). �

Proof of Lemma 4.2. The Jacobian matrix is

DZLη (x, y) =
(

2x − 3x2 − (L− A)+ 2x(L− A)− y −(x − L)

B(1 − C)y B(x(1 − C)− L− C(−L+ A))

)

and in (1, 0) isDZLη (1,0)

=
(

−(1 − L+ A) −(1 − L)

0 BH

)

(a) If H > 0, then detDZLη (1,0) = −BH(1 − L +
A) < 0 and the singularity (1, 0) is a saddle point.

(b) If H < 0, then detDZLη (1,0) = −BH(1 − L +
A) > 0, and the eigenvalues are both negative
because trDZLη (1,0) = −(1−L+A)+ BH < 0.
The coordinateye < 0, and the point (xe, ye) are
found in the fourth quadrant.

(c) If H = 0, the singularities (1, 0) and (xe, ye) col-
lapse, but that singularity is nonhyperbolic. Us-
ing the Central Manifold Theorem (Guckenheimer
and Holmes, 1983), it follows that the point (1, 0)
is locally asymptotically stable. �

Proof of Theorem 4.3. The Jacobian matrix at the
singularity (xe, ye) is

DZLη (xe, ye) =




T(A,C,L) − AC

1 − C

B(1 − C)(L+ AC)H

(1 − C)C
0




with detDZLη (xe, ye) = (AB(1−C)(L+ AC)H)/(1−
C)2, and the sign of the eigenvalues depending only on

trDZL
η (xe, ye) = T(A,C,L) = ((3CL − L + AC2 −

AC3 −3C2L+C3L+L2 −3CL2 −C2A2 +3C2L2 −
C3A2 − C3L2 − 2AC2L+ 2AC3L)/C(1 − C)2)

In order to analyze the sign of the trace, we consider

S(A,C,L)= 3CL − L+ AC2 − AC3 − 3C2L

+C3L+ L2 − 3CL2 − C2A2 + 3C2L2

−C3A2 − C3L2 − 2AC2L+ 2AC3L

= (1 − C)3L2 − (1 − C)(2AC2

+ (1 − C)2)L+ AC2(1 − C − AC− A)

and we obtain that

(a) If S > 0, the singularity (xe, ye) of system (6) is an
unstable equilibrium point, surrounded by a limit
cycle.

(b) If S < 0, the singularity (xe, ye) of system (6)
is a locally asymptotically stable equilibrium
point. �

Proof of Theorem 5. The Jacobian matrix at (xe, ye)
is

DYLν (xe, ye) =




SL

C(1 − C)2
− CL

1 − C
BL(1 − C − L)

(1 − C)C
0




WhenH > 0, detDYLν (xe, ye) = (BL2H)/(1 − C)2,
and the eigenvalues depend only on the sign of
trDYLν (xe, ye) = (SL)/C(1 − C)2, which depends on
the sign ofS(C, L)

(a) If S > 0, then (xe, ye) is unstable. According to the
Poincaré-Bendixon Theorem, a limit cycle exists.

(b) If S < 0, then (xe, ye) is locally asymptotically
stable. �
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